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Abstract

Computational testing of the arbitrary Lagrangian-Eulerian shock physics code, ALEGRA, is pre-
sented using an exact solution that is very similar to a shaped charge jet flow. The solution is a
steady, isentropic, subsonic free surface flow with significant compression and release and is pro-
vided as a steady state initial condition. There should be no shocks and no entropy production
throughout the problem. The purpose of this test problem is to present a detailed and challenging
computation in order to provide evidence for algorithmic strengths and weaknesses in ALEGRA
which should be examined further. The results of this work are intended to be used to guide future
algorithmic improvements in the spirit of test-driven development processes.
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Chapter 1

Introduction

Shock hydrocodes can be used to model interactions at very high pressures due to high veloc-
ity impact. These codes create simulations that model important, complex scenarios. A certain
code may perform well under specific conditions and fail catastrophically in other cases. Due to
the breadth of situations a code must handle, constant testing is required for improvement of the
mathematical algorithms and their implementation. This type of test-driven development ensures
continuous improvment and quality maintenance of a code. Verification and validation are two sep-
arate and distinct aspects of testing a simulation code. Verification compares the results of the code
against known properties of the mathematical equations. Validation involves comparison of the re-
sults against experimental data for determination of the validity of the equations for the purposes
intended. This work is a continuation of a 2002 SAND report entitled “Evaluation Techniques and
Properties of an Exact Solution to a Subsonic Free Surface Jet Flow”, which detailed the theory
and evaluation of an exact free surface compressible planar jet flow solution which closely mimics
that of a shaped charge jet [28]. This report discusses the verification of ALEGRA, an arbitrary
Lagrangian-Eulerian shock code, using this exact subsonic jet flow solution.

ALEGRA is an arbitrary Lagrangian-Eulerian (ALE) shock physics hydrocode that has been
developed at Sandia National Laboratories since 1990 [30]. The code is designed for modeling
shock waves and has the ability to handle complex geometries with multiple materials. ALEGRA
can simulate a wide variety of scenarios involving shocks at high pressures.

A conical shaped charge includes a cylinder packed with a high explosive. A cone shape is
hollowed out of the explosive and replaced with a metal liner. Upon detonation of the explosive
material, the conical liner is collapsed forming a jet of metal. The jet forms and heats due to shock
loading and plastic work [40, 24, 38]. A shaped charge jet may be idealized during the quasi-
steady collapse phase with a steady compressible fluid model. Key features in this model include
large velocity gradients in small spatial regions as well as very large strains in a steady subsonic
isentropic free-surface flow. The features combine to generate computational difficulties with the
shaped charge jet test problem. The shaped charge jet is very difficult to model correctly by either
a Lagrangian finite element code or an Eulerian code. Lagrangian codes tend to experience severe
deformation in the jet leading to a breakdown of the numerical method due to element distortion.
The Eulerian codes may have difficulty with interfaces and excessive heating of jet material. The
test problem proposed tests ALEGRA executing in Eulerian mode where the nodes move based
on the velocity of the material(Lagrangian) and then the nodes are moved back to their original
positions and quantities are remapped back onto this mesh (Eulerian).
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Expected numerical issues for the shaped charge problem may include unrealistic temperature
diffusion into the liner from the explosive products, nonphysical numerical exchange of kinetic
energy to internal energy and heating due to artificial viscosity terms in high compression rate
shockless processes [15, 31, 22]. Variations in numerical algorithms can produce dramatic differ-
ences in estimates of internal energy and temperature. The question is really one of entropy. In any
numerical calculation one wishes any excess numerical production of entropy to be much smaller
than the correct entropy increase. The numerical difficulties may be particularly acute when the
flow to be computed is isentropic or poorly resolved. If confidence is to be placed in calculations
which purport to include advanced material models that are highly dependent on temperature, it
is necessary to develop reliable numerical methods and practical calculational rules of thumb to
deal with the shaped charge jet problem in the case of simple hydrodynamic material modeling.
For example, temperature dependent yield and fracture models require that heating in flows with
or without shocks as well as heating due to plastic work be calculated accurately. Mechanical
response is affected by solid-solid, solid-liquid and liquid-vapor phase transitions and these tran-
sitions will appear in the numerical simulation correctly only if the thermodynamic state space
is traversed correctly. The proper application of advanced material modeling in shaped charge
simulations thus depends upon proper energy partitioning in the numerical method. In particular
it may be difficult for a numerical method to distinguish a rapid shockless transition from a true
shock which is to be captured by the numerical method. Of course, it does not follow that an
algorithm which can effectively computes a shockless flow properly will capture shocks well. The
complete shaped charge jet problem requires consistent and effective modeling for both shocks
and subsonic quasi-steady state flow. This report is concerned with a specific test problem which is
used to test the current capability of ALEGRA, a shock capturing code, to model shockless high-
strain-rate isentropic subsonic flow. The principal strategy and purpose for this work is to discover
inconsistencies and anomalies which then give direction for research and development leading to
improvements in numerical algorithms.

The conical shaped charge jet has been reasonably modeled in a gross engineering sense for
years by the assumption that the jet collapse process is approximately a steady state in the frame
of reference of the collapse point and that free-surface jet theory can be applied [3]. Operational
shaped charges collapse the liner at a subsonic velocity in order to form coherent jets. Supersonic
collapse speeds result either in no jet formation or incoherent jets [6]. Steady compressible sub-
sonic plane and axis-symmetric free surface jet flows may be effectively calculated with special-
ized finite difference codes employing boundary fitting coordinate systems or by computing in the
hodograph plane [23, 7]. The hodograph plane uses velocity and flow angle, (q,θ), as independent
variables. However, as discussed above these same flows can still represent a significant challenge
for general purpose transient dynamics codes. Karpp developed a test problem, the symmetrical
impact of two plane jets, for the purpose of comparison with hydrodynamic code solutions and
in order to better understand compressible jet flow [14]. He used the Chaplygin pressure-density
relation given by

p = (ρ∞c∞)2(1/ρ∞−1/ρ) = (ρ∞c∞)2(ν∞−ν) (1.1)

where p is pressure, ρ∞ is the reference or free surface density, ν = 1/ρ is the specific volume,
and c∞ is the reference sound speed. A material with the above response is often termed a Chap-
lygin gas. The Chaplygin gas has the well-known property that the hodograph plane equations
of motion can be manipulated to give the incompressible equations of motion for which standard
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incompressible methods apply. Thus any free-surface flow which can be solved by the usual meth-
ods of incompressible plane flow analysis can be solved for the Chaplygin gas. Karpp’s work was
used to assist in verifying a version of the HELP code which conserved internal energy instead of
total energy in the remap step of the calculation [15].

The two parameters of the Chaplygin gas can be chosen to match any reference sound speed and
pressure to give a linear curve in p−ν space. It is desirable to have an additional test problem for
which the pressure-volume relation is concave upward. This is not simply an academic extension
since curvature in the p−ν relation is necessary for heat addition in a shock process. Extremely
high strain rate isentropic processes may have every appearance of a shock process to a finite
resolution numerical grid. In order to fully test numerical methods, it appears that one is required
to test with a pressure-volume relation which stiffens under compression. To this end one may
choose the isentropic relation

p = p̄(ρ) = κ∞((ρ/ρ∞)γ −1) (1.2)

where κ∞ ≡ ρ∞c2
∞/γ and p(ρ∞) = 0. This relation is known as the Tait or Murnaghan equation of

state and is clearly of the same form as that for an ideal gas with the pressure at reference density
set to zero by subtracting a constant. The Chaplygin gas is a particular case of the above relation
and is chosen by setting γ =−1.

One can choose κ∞ and γ in Equation 1.2 to match the first and second derivatives with respect
to ρ at ρ∞ for any given isentrope. Of course the Hugoniot may also be used, if this is more
convenient, since the Hugoniot and isentrope are the same to third order in the strain. A common
form for the description of a metal Hugoniot is

pH = ρ∞c2
∞η/(1− sη)2 (1.3)

where η = 1−ρ∞/ρ . One may match either of these two curves locally near ρ = ρ∞ to the same
order by the Murnaghan relation. Setting the first and second derivatives with respect to 1/ρ of
Equations 1.3 and 1.2 equal at reference conditions leads to the equations

γκ∞ = ρ∞c2
∞ (1.4)

γ(γ +1)κ∞ = 4ρ∞c2
∞s . (1.5)

Solving for κ∞ and γ yields the equations

γ = 4s−1 (1.6)

κ∞ = ρ∞c2
∞/γ . (1.7)

In this case the Chaplygin gas may be obtained by setting s = 0.

It is convenient to develop a simple general equation of state relationship which matches the
Murnaghan gas isentropic relations. The most obvious candidate for such an equation of state for
test purposes is a Mie-Grüneison relation for the pressure p(e,ρ). In this case,

p(e,ρ) = p̄(ρ)+ρΓ(e− ē(ρ)) (1.8)
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where ē satisfies the isentropic differential equation for the internal energy,

de =−pdν , (1.9)

so that

ē− e∞ =
κ∞

γ−1

(
1
ρ

(ρ/ρ∞)γ − 1
ρ∞

)
+κ∞(1/ρ−1/ρ∞) . (1.10)

The Grüneison coefficient Γ = ν(∂ p/∂e)ν is an arbitrary function of volume. For convenience,
ρΓ = α is taken to be constant. The heat capacity at constant volume, cν = (∂e/∂T )ν , is also
assumed constant. One can then derive equations for the energy, e (Equation 1.11), pressure,
p(ρ,T ) (Equation 1.12), temperature, T̄ (Equation 1.16), entropy, S (Equation 1.17), and sound
speed, (c (Equation 1.21).

e− ē(ρ) = cν(T − T̄ (ρ)) (1.11)

and
p(ρ,T ) = p̄(ρ)+αcν(T − T̄ (ρ)) . (1.12)

Application of the second law of thermodynamics allows the determination of the variation of T̄
with ρ .

dS =
de
T

+ p
dν

T
(1.13)

=
cν

T
dT +((∂e/∂ν)T + p)

dν

T
(1.14)

=
cν

T
dT +(∂ p/∂T )νdν . (1.15)

The identity T (∂ p/∂T )ν = (∂e/∂ν)T + p has been used in the final formula above. This identity
follows from the consistency condition for dS to be an exact differential. Since (∂ p/∂T )ν = αcν ,
Equation 1.15 is solvable on an isentrope. The solution of the differential equation for T̄ is

T̄ = T∞e−α(ν−ν∞) . (1.16)

Integrating at constant volume to obtain the entropy, S, yields

S = S̄ +
∫ T

T̄

cν

T
dT (1.17)

= S∞ + cν log(T/T∞)+αcν(ν−ν∞) . (1.18)

A general relation for the sound speed is

c2 = (∂ p/∂ρ)S = (∂ p/∂ρ)T +(∂ p/∂T )ρ(∂T/∂ρ)S (1.19)

= (∂ p/∂ρ)T +
T

ρ2cν

(∂ p/∂T )2
ρ . (1.20)
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Since (∂ p/∂T )ρ = αcν and (∂ p/∂ρ)T = d p̄/dρ−α2ν2cν T̄ ,

c2 = d p̄/dρ +α
2
ν

2cν(T − T̄ ) . (1.21)

The above equations should be sufficient to provide enough information to implement this equation
of state in any code framework. Note that for this reference isentrope, p(ρ∞,T∞) = 0. Copper
parameters used in this report are listed in Table 1.1 in cgs units. These were obtained from the
copper table on page 532 of Appendix E of Kinslow [16]. Only the first three parameters are
relevant to the exact isentropic flow as summarized in this report. The remaining parameters are
useful for defining the full equation of state in a hydrocode such as ALEGRA. A linear pressure-
volume isentrope may be obtained with s = 0 (γ =−1).

ρ∞ 8.94 gm/cc
c∞ 3.94 105 cm/s
s 1.489 (γ = 4.956)
Γ 1.99
cν 3.718 106 erg/(gm-deg K)
T∞ 293 deg K
e∞ arbitrary
S∞ arbitrary

Table 1.1. Parameter values for a copper equation of state.

Figure 1.1 shows the pressure-volume isentrope for a Chaplygin gas isentrope and for a Mur-
naghan isentrope which is matched to a standard Hugoniot relation for copper. The Mie-Grüneisen
formulation, using the Murnaghan isentropic relation as a reference curve, represents a reason-
able copper equation of state for conditions of interest and can be easily implemented as a simple
equation of state model in any shock modeling code.

In this report we review computational procedures for evaluation of steady isentropic subsonic
wall jet flows for the pressure-density relation of Equation 1.2 as given in great detail in [28]. The
steady plane irrotational compressible fluid equations of motion in the hodograph plane variables,
(q,θ), are separable and particular solutions can be obtained in terms of products of trigonometric
functions and Gauss hypergeometric functions. These can be used to solve certain problems of a
particular form that arise frequently in free surface flow theory. The original ideas and procedures
are due to Chaplygin who solved the problem of a plane jet emerging from a slot in a wall [5]. A
great many problems can be solved by Chaplygin’s technique or variants of it [35].

This exact steady solution is imported into ALEGRA in order to test its ability to correctly
model shockless isentropic subsonic free surface flow. The steady subsonic isentropic flow is a
complex and challenging simulation for ALEGRA. While ALEGRA does not guarantee that the
vorticity is zero for all time, the exact solution representation of the initial conditions should be
close enough as to avoid any significant negative effects. The desired results are that the entropy
will remain constant at all points while the temperature of any material point will stay on the
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Figure 1.1. Comparison of Chaplygin and Murnaghan gas isen-
tropes for Cu.
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isentrope and then move toward the free-stream value as it flows into the fully released free-stream
jet. The actual simulation results can then highlight numerical features of current algorithms and
indicate which classical or newly implemented proposed advanced algorithms are candidates for
acceptance or additional improvement and testing.
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Chapter 2

Exact Solution Overview

This chapter of the report focuses on major details and concepts from the 2002 SAND report
describing the analytic solution of a subsonic shaped charge jet [28]. Much of the theory but not
the numerical details are presented in order to provide the reader with an immediate grasp of the
solution methodology.

Steady Plane Irrotational Gas Dynamics in Hodograph Variables

The theory of steady plane irrotational adiabatic compressible inviscid flow theory in the hodo-
graph variables, (q,θ), is well documented [2, 4, 12, 13, 20, 32]. A short summary of pertinent
equations for our purposes follows below in the the notation of Bers [2]. In steady irrotational
isentropic flow, with an assumed p = p(ρ) relation, Bernoulli’s theorem says that

q2

2
+
∫ d p

ρ
=

q2

2
+
∫ c2dρ

ρ
(2.1)

is constant and thus gives a relation between density and flow speed. The density, sound speed,
c, (c2 = d p/dρ =−ρq/ρ ′(q)), and Mach number, M, (M2 =−qρ ′(q)/ρ), are then computable as
a function of speed alone. For the case of Equation 1.2 these relationships may be given explicitly.
The Bernoulli equation becomes

q2

2
+

c2

γ−1
=

c2
0

γ−1
(2.2)

where the subscript zero denotes stagnation point conditions (q = 0). The stagnation point density
and sound speed are given by

c2
0 = c2

∞(1− γ−1
2

M2
∞) (2.3)

ρ0 = ρ∞(1− γ−1
2

M2
∞)1/(γ−1) . (2.4)

For convenience, units are now chosen such that, at the stagnation point (q = 0), the density
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ρ0 = 1, and sound speed c0 = 1. Thus

c2 = 1− γ−1
2

q2 (2.5)

ρ = (1− γ−1
2

q2)1/(γ−1) (2.6)

M2 =
q2

1− γ−1
2 q2

(2.7)

q2 =
M2

1+ γ−1
2 M2

. (2.8)

The irrotationality assumption
∂u
∂y
− ∂v

∂x
= 0 (2.9)

implies the existence of a velocity potential φ such that dφ = udx + vdy where u and v are the x
and y velocity components, respectively. Conservation of mass,

∂ (ρu)
∂x

+
∂ (ρv)

∂y
= 0, (2.10)

implies the existence of a stream function, ψ , such that dψ =−ρvdx +ρudy represents the mass
flux across a differential line element from left to right. The relations

u =
∂φ

∂x
v =

∂φ

∂y
(2.11)

ρu =
∂ψ

∂y
ρv =−∂ψ

∂x
(2.12)

follow.

Assuming a one-to-one mapping between the physical plane (x,y) and the hodograph or velocity-
angle space, (q,θ) with (u,v) = (qcosθ ,qsinθ), one obtains equations for the variation of the
stream function and velocity potential in terms of q and θ . Thus

dφ = udx+ vdy = q(cosθdx+ sinθdy) (2.13)
dψ =−ρvdx+ρudy = ρq(−sinθdx+ cosθdy) (2.14)

or

dz = dx+ idy =
eiθ

q

(
dφ +

i
ρ

dψ

)
. (2.15)

Since dz is a perfect differential, so that the line integral in the physical plane is path indepen-
dent, one obtains after considering that φ and ψ are functions of q and θ and equating the mixed
derivatives of z with respect to q and θ , the equations

∂φ

∂θ
=

q
ρ

∂ψ

∂q
∂φ

∂q
=−(1−M2)

qρ

∂ψ

∂θ
. (2.16)
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Elimination of φ leads to an equation for the stream function

q2 ∂ 2ψ

∂q2 +q(1+M2)
∂ψ

∂q
+(1−M2)

∂ 2ψ

∂θ 2 = 0 . (2.17)

This is termed the Chaplygin equation for the stream function. It is a separable linear second
order equation whose coefficients depend only on the speed q. This equation possesses separable
solutions of the form ψ = ψn(q)einθ . In the case of the isentropic ideal gas relation, Chaplygin
noted that if one writes

ψ = τ
n/2Fn(τ)einθ = ψn(τ)einθ (2.18)

where
τ = (q/qmax)2 = (γ−1)q2/2 (2.19)

so that
τcr = (γ−1)/(γ +1) (2.20)

then substitution in Equation 2.17 yields

τ(1− τ)F ′′n +[n+1− (an +bn +1)τ]F ′n−anbnFn = 0 (2.21)

where

an +bn = n− 1
γ−1

(2.22)

anbn =−n(n+1)
2(γ−1)

. (2.23)

Clearly, an and bn are roots of a quadratic. In addition, we adopt the convention , an < bn. It may
be shown that either γ > 1 or γ ≤−1 is required in order that an and bn be real for every n.

One recognizes the solutions of Equation 2.21 as Gauss hypergeometric functions. The solution
regular at τ = 0 is of particular interest to us and is given by

Fn(τ) = 2F1(an,bn;n+1;τ) =
∞

∑
m=0

(an)m(bn)m

(n+1)m

τm

m!
(2.24)

in the notation of Abramowitz and Stegun with (a)m ≡ (a)(a + 1) · · ·(a + m− 1) [1]. For the
Chaplygin gas, γ =−1, so that an = n/2 and bn = (n+1)/2. Then by a quadratic transformation
formula,

2F1(n/2,(n+1)/2;n+1;τ) =
(

2
1+
√

1− τ

)n

. (2.25)

(See 15.3.19 of [1].) Since Equation 2.17 is linear, boundary value problems may be solved by
appropriate linear combinations of solutions. Free surface boundary value problems are especially
amenable to solution since these surfaces are lines of constant velocity in hodograph variables.
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Figure 2.1. Plane Jet Flow

Chaplygin Solution to the Plane Free Surface Wall Jet

Imagine a plane free surface jet of unit width impinging on a wall at an angle β and subsonic
velocity q1 < qcr with an incoming flux ∆ψ = ρ1q1 where ρ1 is the free streamline density and q1
is the free streamline velocity. The jet splits into two outgoing streams of asymptotic widths (1+
cosβ )/2 on the left and (1− cosβ )/2 on the right as is required from mass and linear momentum
conservation. See Figure 2.1.

The Chaplygin procedure takes a solution of the incompressible problem and provides a similar
subsonic compressible solution. The incompressible wall jet solution for this problem can be de-
termined by standard complex variable techniques [4, 14]. The incompressible complex potential,
W = φ + iψ , is given by

W (Ω) = (q1/π)
{

log(1+Ωeiβ )+ log(1+Ωe−iβ )

−(1− cosβ ) log(1−Ω)− (1+ cosβ ) log(1+Ω)}
(2.26)

where Ω = (q/q1)e−iθ is the incompressible velocity in complex form. Another representation for
this solution may be given by expanding each of the log functions in a Taylor series about Ω = 0.
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Thus

W =−(q1/π)

{
∞

∑
n=2

1
n
(q/q1)ne−in(θ−β+π)

+
∞

∑
n=2

1
n
(q/q1)ne−in(θ+β−π)

− (1− cosβ )
∞

∑
n=2

1
n
(q/q1)ne−inθ

− (1+ cosβ )
∞

∑
n=2

1
n
(q/q1)ne−in(θ−π)

}
.

(2.27)

The n = 1 terms in each series sum exactly to zero as a consequence of the required mass and
momentum balance and thus do not appear. The Chaplygin procedure for writing a corresponding
subsonic compressible solution from an incompressible solution is to make the correspondence(

q
q1

)n

⇒ ψn(τ)
ψn(τ1)

(2.28)

in the formula for the stream function ψ where τ1 is the value of τ on the free streamlines. Thus
the stream function for compressible flow is

ψ = ((ρ1q1)/π)

{
∞

∑
n=2

1
n

ψn(τ)
ψn(τ1)

sinn(θ −β +π)

+
∞

∑
n=2

1
n

ψn(τ)
ψn(τ1)

sinn(θ +β −π)

− (1− cosβ )
∞

∑
n=2

1
n

ψn(τ)
ψn(τ1)

sinnθ

+(1+ cosβ )
∞

∑
n=2

1
n

ψn(τ)
ψn(τ1)

sinn(θ −π)

}
.

(2.29)

An extra factor of ρ1 is applied in the above formula since the stream function in the compressible
case represents a mass flux. The convergence theory for this series, called a Chaplygin series, has
been described by Sedov [32] and a summary of the theory is given in a previous report [28].

Integration to obtain the physical plane may be accomplished in several ways since the physical
plane is independent of integration path in the (q,θ) plane. The evaluation code actually imple-
ments two different approaches which utilize Equations 2.29, 2.15 and 2.16 to obtain a complex
series for ∂ z/∂q and ∂ z/∂θ . In the first ∂ z/∂q is evaluated for each point (q,θ) and then z(q,θ)
is obtained by numerical integration with respect to q subject to z(0,θ) = 0 using the trapezoidal
rule. Summation of the series near the free surface require the use of a non-linear convergence
accelerator for summing the slowly convergent and divergent series. The second technique is to
integrate ∂ z/∂θ with respect to θ analytically and sum the resultant series of integrated terms to
obtain the position z(q,θ).
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Solution Evaluation

The exact solution discussed in the previous section can be written down with relative ease. The
difficulty now with this solution (as with many non-trivial exact solutions) is that the properties of
the solution are not immediately obvious and an efficient and accurate numerical evaluation of the
solution is needed for any chosen value of the Mach number, M, and the collapse angle, β . We give
a brief summary of this significant effort which has been previously documented [28]. There are
two major tasks: first, the Chaplygin functions, Fn(τ), must be computed, and second, the infinite
series related to the solution must be effectively summed. This summation is a particular problem
near the free surface since the convergence of the series is very slow.

In [5], Chaplygin used a continued fraction approximation to compute

(2τ/n)ψ ′n/ψn = 1+(2τ/n)F ′n/Fn.

This was sufficient to allow the computation of the contraction ratio for a planar jet emanating from
a slit in a semi-infinite reservoir. Frank has given a number of continued fraction representations for
ratios of Gauss hypergeometric functions [11]. The representations were derived by manipulation
of the three term contiguous relations for the hypergeometric function. The primary representation
used in this work is discussed below. Consider continued fractions of the form

β0 +
α1 |
| β1

+
α2 |
| β2

+
α3 |
| β3

+ · · · . (2.30)

where, for example, three terms of the continued fraction give

β0 +
α1

β1 + α2
β2

. (2.31)

A continued fraction representation ( Equation (2.5’) vii of [11]) is given by the coefficients

αk =−(b+ k)(c−a+ k−1)
(c+ k−1)(c+ k)

τ k = 1,2,3, · · · (2.32)

βk =
b−a+ k

c+ k
τ +1 k = 1,2,3, · · · (2.33)

with β0 = 1. This continued fraction converges to the generating function

F(a,b;c;τ)
F(a+1,b+1;c+1;τ)

+
aτ

c
=

abF(a,b;c;τ)
cF ′(a,b;c;τ)

+
aτ

c
(2.34)

provided | τ |< 1. The prime represents differentiation with respect to τ . The limit characteristic
equation associated with the forward difference equation for the continued fraction is

σ
2− (1+ τ)σ + τ = 0 (2.35)

and has roots 1 and τ . Thus for γ > 1 and subsonic values of τ (0 < τ < (γ−1)/(γ +1) < 1), this
continued fraction leads to an effective computation of the ratio F ′/F .
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The ratios F ′/F are needed to compute shapes of free streamlines and related fundamental
quantities (e.g. the compression ratio for a jet from a slit). For some applications this may be
sufficient and no further information about F would be necessary. However, since the whole flow
field is of interest for code verification studies, the F ′/F information obtained above can be used
to compute F in a useful form. Numerical integration leads immediately to values of logF(τ)
with log(F(0)) = 0. The trapezoidal rule with Romberg extrapolation is used for the numerical
integration scheme. The ratio ψn(τ)/ψn(τ1) is given by

ψn(τ)/ψn(τ1) = exp{(n/2) log(τ/τ1)+ logFn(τ)− logFn(τ1)}. (2.36)

Forming sums and differences of logs prior to exponentiation has the advantage of avoiding un-
derflow errors for large values of n. The above algorithm was found to be accurate, reliable and
effective with no apparent numerical difficulties.

Once the Chaplygin functions are available, it is necessary to sum the series solutions. The
series solutions given by the Chaplygin technique are very slowly convergent for points near to
the free surface. For q = q1 but away from the singular points the z series is conditionally con-
vergent and the ∂ z/∂q series is divergent. It therefore seems necessary to sum the series using a
convergence accelerator which will successfully accelerate the convergent series as well as sum
the divergent series on the boundary. Both summations are required for a complete solution speci-
fication since ∂ z/∂q is needed to compute velocity gradients.

What is meant by the ”sum” of a divergent series? A series can be thought of as a limited rep-
resentation of an underlying function. This representation makes mathematical sense only where
it is convergent. However, it can be meaningfully related to an extension of this function outside
the original domain of validity of the representation. For example, the complex series 1+ z+ z2 + ·
is convergent only for |z|< 1 while the equivalent representation 1/(1− z) is valid everywhere ex-
cept at the pole z = 1. Successful series acceleration and summation techniques essentially extract
a more fundamental representation from a sequence of finite sums.

The ε-algorithm was found to be a successful accelerator for summing the series representation
for ∂ z/∂q and z. The sums were computed separately and as complex sequences. This preserves
the simple structure of the sums and precluded the failure of the acceleration algorithm due to
the presence of zero or very small terms in the real or imaginary parts. The ε algorithm appears
successful since the algorithm will successfully compute the analytic continuation of meromorphic
functions in the complex plane with a finite number of poles. See page 131 of [39].

The ε-algorithm has been implemented previously by Nieuwland (1967) to accelerate the the
convergence of Chaplygin series [21]. The ε-algorithm is an economical procedure for evaluating
the Schmidt transformation or iterated Shank’s transformation for accelerating the convergence of
certain sequences. Given a sequence sm,m≥ 0 with m integral the ε-algorithm is defined by

ε
(m)
k+1 = ε

(m+1)
k−1 + kk(ε(m+1)

k − ε
(m)
k )−1 m,k ≥ 0 (2.37)

ε
(m)
−1 = 0, ε

(m)
0 = sm m≥ 0. (2.38)

The values ε
(m)
2k are used as estimates for the limit of the sequence sm given by the partial sum of

the series.
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The variation of the pressure, density and energy are all computable from the velocity, q. These
can be plotted at the mesh locations which are computed from the solution as described above.
Additional kinematic quantities are of interest and can also be computed from the solution. The
methodology and description of how this can be done along with a comparison of flow character-
istics with respect to variation in the exponent γ is found in the preceding report [28].

A stretched evaluation mesh is utilized in both the θ direction and the q direction. The θ

mapping is two cubic polynomials connecting the θ values corresponding to the singularities. The
θ values match at the singularities, but the slopes with respect to the linear θ are set zero at the
singular values of θ . This has the effect of concentrating more points near singularities so that
better coverage is obtained in physical space. The q mesh is a linear q mesh near the origin which
switches to a linear τ mesh at a specified mesh number. This has the effect of generating smooth
line plots in physical space. The code given in Appendix A allows for specification of the θ and τ

stretching options.
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Chapter 3

Comparing the Exact Solution to ALEGRA
solutions

The exact solution detailed in Chapter 2 is imported into ALEGRA for the purpose of test-
driven development for continuous improvement of the numerical algorithms. Only the full Eu-
lerian remap option is used for testing the exact solution. Since the exact solution is a steady
solution, we wish to import this solution as initial conditions. We then expect this solution to be
maintained for some time period until the effects of the jet at “infinity” possibly interacting with
mesh boundaries become apparent. The solution is imported through the diatom exodus solution
import facility in ALEGRA. Once imported, a number of tests are run which are intended to test
various algorithms in ALEGRA. Some algorithms are relatively new and other have been in the
code for a long time. The intent of the detailed comparisons in this report is to highlight subtle
numerical issues which may be present when a shock code is applied to this subsonic isentropic
flow problem. In particular it is expected that irreversible heating may occur in the ALEGRA algo-
rithms. The challenge is to determine from testing which algorithms or combination of algorithms
give the best results and which might clearly seen as needing improvement and in what ways. The
results of testing the default settings of ALEGRA, artificial viscosity, midpoint time integration,
DeBar energy advection, the extended finite element method(XFEM), and mixed material/void
algorithms are shown in Chapters 4 through 9.

The simulation is run using two incident angles (β = 90◦, β = 45◦) in the stagnation point
frame of reference. The stagnation point frame of reference provides a simpler way of viewing the
shaped charge jet simulation. The imported solution remains stationary and material is added to
create a continuous flow through the imported solution thereby forming a jet as shown in Figure
3.1. In Chapter 10, a second frame of reference is detailed and results are shown.

The input parameters and CJETB code shown in Appendix A are used to create an exodus file
containing the exact solutions for both angles, β = 90◦ (timestep 1) and β = 45◦ (timestep 2). It
creates the solution using the EXODUS I format. For analysis and visualization, the EXODUS I
file is then converted to EXODUS II format. The parameters used for the simulation approximately
match a copper equation of state as given in Table 1.1. The free-stream Mach number is set to .9.

The testing of ALEGRA focuses on the under-resolved case of the test problem. High reso-
lution runs improve the code results at the expense of requiring greater computing power to com-
plete the problem. Ideally this problem will guide future improvement of algorithms at lower
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Figure 3.1. Initial timestep of the shaped charge test problem in
ALEGRA.

resolutions. With improved algorithms for lower resolution, ALEGRA will require less computing
power to achieve the same accuracy as high resolution simulations. Chapter 4 contains information
and results regarding the default settings of ALEGRA. It includes plots which compare the effects
of increasing the mesh resolution. The under-resolved cases with larger errors provide better in-
sight into algorithmic improvements. Plots are labeled by the number of elements across the jet
as shown in Figure 3.1. The height of the jet is dependent on the angle β as shown in Figure 2.1,
therefore the number of elements across the jet varies, as β varies, in order to achieve the same
resolution. When β = 90◦, the typical under-resolved case includes 17 elements across the jet. A
high resolution run includes between 31 and 57 elements across the jet. When β = 45◦, the typical
under-resolved case includes 5 elements across the jet. A typical run at high resolution includes
between 9 and 17 elements across the jet.

The results of a “perfect” simulation would not change as time progresses because the analytic
solution is for a steady state problem. The material would heat up as it compresses and then release
and return to its original temperature. The entropy would be constant and uniform throughout the
whole problem. It is expected that there will be some initial very small waves and oscillations as
the simulation begins due to finite resolution and imperfections in the initial state. These oscilla-
tions may be expected to diminish and damp out as time progresses. The oscillations may cause
fluctuations in dependent variables such as temperature but should be small and reach a quasi-
steady state. Once a quasi-steady state is achieved, analysis is performed to view any variations
from the analytic solution.

Analysis of the results are performed using horizontal lineouts which are compared against
the analytic solution. Three lineouts are used for each case. The main focus of analysis is in the
stagnation point region and along the surface of the jet. Density, pressure, and temperature are
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reviewed for each lineout. There is a lineout through the elements along the axis, through the
elements in the middle of the jet, and through the elements closest to the surface of the jet. They
are referred to as lineouts “on-axis”, “mid-jet”, and “jet-surface”, respectively. The nature of the
test problem allows for comparison of later timesteps with the initial timestep to provide evidence
for the correct subsonic isentropic flow.

In order to compare the initial timestep against later timesteps, it is first necessary to ensure
the initial timestep matches the analytic solution. The initial timestep for the ALEGRA simulation
imports the exact solution through the exodus diatom solution import. Lineouts as described above
are used to compare the analytic solution from the CJETB code and initial timestep. Figures 3.2 -
3.7 show the exact solution is imported correctly into the initial timestep and matches the analytic
solution.
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Figure 3.2. β = 90◦: Density lineouts for the initial timestep in
ALEGRA compared against the exact solution.

Figure 3.3. β = 90◦: Pressure lineouts for the initial timestep in
ALEGRA compared against the exact solution.
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Figure 3.4. β = 90◦: Temperature lineouts for the initial timestep
in ALEGRA compared against the exact solution.
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Figure 3.5. β = 45◦: Density lineouts for the initial timestep in
ALEGRA compared against the exact solution.

Figure 3.6. β = 45◦: Pressure lineouts for the initial timestep in
ALEGRA compared against the exact solution.
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Figure 3.7. β = 45◦: Temperature lineouts for the initial timestep
in ALEGRA compared against the exact solution.
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Chapter 4

ALEGRA Solution using Default Settings

As the simulation begins, small oscillations occur near the stagnation point and the corner
where the jet is formed. These two areas are expected to be the most difficult because of the high
compression and release, and the sharp change in velocity around the corner. These oscillations
are not unexpected and are caused by small local interactions as the truncation errors in the nu-
merical solution try to adjust to the exact initial conditions. These oscillations are greatly reduced
after a few ALEGRA time steps. At the final timestep of 15 µs, the oscillations that occurred at
the beginning have diminished and the effects have been pushed farther along in the jet as more
material moves through stagnation point. When β = 90◦, ALEGRA is able to handle the isentropic
flow very well. Figures 4.1 and 4.2 show a close up view of the temperature at t = 0.0µs and t =
15µs respectively. All appears correct with the exception of a slight increase in temperature visible
along the surface of the jet at t = 15µs.

Figures 4.3 and 4.4 show the temperature for β = 45◦ at t = 0.0 µs and t = 15 µs respectively.
From these plots a more significant rise in temperature is seen along the surface of the jet, includ-
ing a particular increase in the corner where material flows into the jet. Important to note is the
lack of temperature rise along the slug. While the simulation with β = 90◦ shows an increase in
temperature on both sides of the inflow, when β = 45◦ the increase in temperature is focused at the
sharp corner and extends into the jet. Thus, from Figure 4.4, it is clear that a major issue occurs
in the tight corner where the jet is formed. Where β = 90◦, as seen in Figure 4.2, the temperature
errors in the corners on either side of the inflow are equivalent. Where β = 45◦ the corners on
either side of the inflow are not equivalent, one being approximately 135◦ and the other being ap-
proximately 45◦. For the smaller angle there is a significant rise in temperature while there is little
to no change in temperature for the larger angle. As β decreases the corner that the material must
turn becomes much sharper and the presence of numerical difficulties is not unexpected. The test
problem was also run using pattern interface reconstruction (PIR), a 2nd order interface tracker in
ALEGRA. PIR shows an insignificant variation from the default interface tracker in ALEGRA for
this test problem.

The lineouts for temperature, where β = 90◦, are shown in Figures 4.5 - 4.7 at t = 15µs.
For many variables the simulation matches the analytic solution well. In this case, temperature
lineouts are used to show deviations from the analytic solution. Also included in these lineouts are
several different resolution qualities. As explained in Chapter 3, and shown in these plots, the high
resolution plots more closely match the analytic solution, particularly along the surface of the jet.
Figures 4.5 - 4.7 show that there are increased temperatures along the surface of the jet. The error
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in temperature is inversely related to the resolution of the mesh. Greater errors are seen for β =
45◦.

Figures 4.8 - 4.13 show lineouts for density and temperature for β = 45◦ at t = 15µs. As with
the previous case, the greatest issues occur along the surface of the jet. Figures 4.8 - 4.10 show
that the density diverges from the analytic solution as the lineout moves toward the jet surface.
The decrease is likely due to the extreme rise in temperature along the jet seen in Figures 4.11 -
4.13. The lineout on the axis and through the middle of the jet show slight increase in temperature
while the greatest increase is along the jet surface shown in Figure 4.13. At greater computational
expense as the mesh resolution increases the temperature error decreases along the surface of the
jet.

Analyzing similarities and differences seen in these two cases where β = 45◦ and 90◦ pinpoints
where issues are occurring. Figures 4.7 and 4.13 are used for the comparison. Both figures show
the temperature error along the surface of the jet is inversely related to the resolution of the mesh.
Clearly smaller elements improve the accuracy of the simulation. Another clear issue as explained
in Chapter 3 is the angle of the shaped charge. As β increases, the errors along the surface of the
jet decrease. The largest angle is the slug in Figure 4.13 at approximately 135◦. At this large angle
no significant errors are visible. As the material moves from the inflow into the slug, the corner is
moderate providing a smoother transition. Evidence of major issues in sharp corners are also seen
in both Figures. There are spikes in the temperature that occur near the sharp corners. The clearest
evidence of these spikes is seen not only in the lineouts but also in Figure 4.4. This figure shows
the hottest portion of the simulation to be in the sharp corner.

Other similarities are seen in reference to the quasi-steady state achieved. The oscillations
from the initial timesteps are seen clearly in Figure 4.13. From the position X = 1 to X = 2, the
temperature is constant at about 600 kelvin with a mesh resolution of 5 elements across the jet.
This region for 1 < X < 2 represents a quasi-steady state that has been reached. For X > 2, the
effects of the initial oscillations in the stagnation point are seen and are pushed out as the test is
allowed to progress further in time. Though it appears the temperature along the surface of the jet
returns to the correct value as X → 6, this area is material from the initial state still being pushed
out as material enters the jet from the inflow. Therefore Figure 4.13 shows an error of roughly 300
kelvin along the jet surface for β = 45◦ with 5 elements across the jet.
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Figure 4.1. Temperature of the shaped charge at the initial
timestep in ALEGRA where β = 90◦ with 17 elements across the
jet.

Figure 4.2. Temperature of the shaped charge at the final
timestep in ALEGRA where β = 90◦ with 17 elements across the
jet. Compare with Figure 4.7.
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Figure 4.3. Temperature of the shaped charge at the initial
timestep in ALEGRA where β = 45◦ with 5 elements across the
jet.

Figure 4.4. Temperature of the shaped charge at the final
timestep in ALEGRA where β = 45◦ with 5 elements across the
jet. Compare with Figure 4.13.
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Figure 4.5. β = 90◦: Temperature lineout on the axis for various
mesh resolutions.
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Figure 4.6. β = 90◦: Temperature lineout in the middle of the jet
for various mesh resolutions.

Figure 4.7. β = 90◦: Temperature lineout on the jet surface for
various mesh resolutions. Compare with Figure 4.2, 8.1, and 9.1.
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Figure 4.8. β = 45◦: Density lineout on the axis for various mesh
resolutions.

Figure 4.9. β = 45◦: Density lineout in the middle of the jet for
various mesh resolutions.
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Figure 4.10. β = 45◦: Density lineout on the jet surface for
various mesh resolutions. Compare to Figure 9.2.

Figure 4.11. β = 45◦: Temperature lineout on the axis for various
mesh resolutions. Compare with Figure 8.4, 9.3, and 10.3.
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Figure 4.12. β = 45◦: Temperature lineout in the middle of the
jet for various mesh resolutions. Compare with Figure 8.5, 9.4,
and 10.4.

Figure 4.13. β = 45◦: Temperature lineout on the jet surface for
various mesh resolutions. Compare with Figures 4.4, 8.6, 9.5, and
10.5.
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Chapter 5

Artificial Viscosity

The shaped charge test problem posed provides computational difficulties related to shock cap-
turing codes. With an inflow velocity just under the sound speed and an initial exact steady state
profile which is fully subsonic, no shock waves should be produced. However it is possible that
the high compression at low resolution may appear to the hydrocode algorithm as a shock and
thus additional entropy could be added through the artificial viscosity terms. Advanced artificial
viscosity algorithms might be able to provide better control of nonphysical numerical dissipation.

Artificial viscosity algorithms in ALEGRA are tested for improvement of their ability to cor-
rectly handle the shockless isentropic flow. Better algorithms should be more proficient at dif-
ferentiation between shocks and non-shock compression. Artificial viscosity works by smoothing
out discontinuities caused by shocks through dissipative processes which add entropy [37]. The
default artificial viscosity is tested along with two other options called the limiter and hypervis-
cosity. The limiter works to monitor the artificial viscosity and reduce or turn off its effects when
the artificial viscosity may be unnecessary. In this case, where no shocks should occur, the limiter
should reduce any negative effects of the artificial viscosity such as added entropy. Hyperviscosity
is an option designed to be utilized together with the limiter. Hyperviscosity is not applied where
the lower order artificial viscosity is applied. The use of hyperviscous dissipation helps to control
small-scale oscillations [25]. The parameters for both the default artificial viscosity option and
utilizing the limiter with hyperviscosity(limhyp) are shown below in Table 5.1.

Default Settings Limiter and Hyperviscosity On
Pronto Artificial Viscosity Pronto Artificial Viscosity
Linear 0.15 Linear 0.50
Quadratic 2.00 Quadratic 1.00
Expansion Linear OFF Expansion Linear ON
Expansion Quadratic OFF Expansion Quadratic OFF
Limiter OFF Limiter ON
Hyperviscosity 0.00 Hyperviscosity 1.00

Table 5.1. Artificial viscosity settings

The limhyp option is intended to be used with the midpoint time integration detailed in Chap-
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ter 6. The central difference time integrator is used for the default artificial viscosity settings of
ALEGRA. Further analysis of the effects of the time integrators is discussed in Chapter 6.

The main area of focus for analyzing the effects of artificial viscosity is the jet surface. As seen
in Chapter 4 the major issues that arise in the test problem are visible through lineouts along the
surface of the jet. Figures 5.1 - 5.7 show the comparison between the default and limhyp option
for temperature on the axis, in the middle of the jet, and on the jet surface.

Figures 5.1 - 5.3 are plots where β = 90◦. They show that the limhyp has not improved the
simulation results when compared with the default settings. Figures 5.1 - 5.3 show how the tem-
perature of the jet is effected based on distance from the axis. For the lineout on the axis (Figure
5.1) and in the middle of the jet (Figure 5.2) the limhyp lineout matches the default and analytic
lineout. The lineout on the surface of the jet (Figure 5.3) shows that the limhyp results in yet higher
temperatures than the default ALEGRA. The temperature error for the limhyp along the jet surface
is nearly twice that of the default settings.

Figures 5.4 - 5.7 are plots where β = 45◦. The density lineout on the jet surface and the
temperature lineout on the jet surface, Figures 5.4 and 5.5 respectively, show that the limhyp option
makes little to no difference from the default solution errors. The lineouts in the middle of the jet
as seen in Figure 5.6 show that the limhyp temperature is slightly greater than the default settings.
Figure 5.7 shows that the heating along the surface of the jet decreases when the limhyp option is
utilized. While the temperature along the surface of the jet for the limhyp option is less than the
default settings it remains significantly higher than the exact solution.
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Figure 5.1. β = 90◦: On axis lineout for temperature with 17
elements across the jet testing ALEGRA artificial viscosity.
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Figure 5.2. β = 90◦: Mid-jet lineout for temperature with 17
elements across the jet testing ALEGRA artificial viscosity.

Figure 5.3. β = 90◦: Jet surface lineout for temperature with 17
elements across the jet testing ALEGRA artificial viscosity.
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Figure 5.4. β = 45◦: Jet Surface lineout for density with 5 ele-
ments across the jet testing ALEGRA artificial viscosity.

Figure 5.5. β = 45◦: On axis lineout for temperature with 5
elements across the jet testing ALEGRA artificial viscosity.
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Figure 5.6. β = 45◦: Mid-jet lineout for temperature with 5 ele-
ments across the jet testing ALEGRA artificial viscosity.

Figure 5.7. β = 45◦: Jet surface lineout for temperature with 5
elements across the jet testing ALEGRA artificial viscosity.
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Chapter 6

Time Integration

There are two time integration methods currently available in ALEGRA for the Lagrangian
step. The current ALEGRA default method is the central-difference time integrator. Central-
difference is a second order algorithm commonly used for structural dynamics calculations which
do not include the energy equation. Since ALEGRA must capture shocks, a solution of the energy
equation is required as well. The current default algorithm is energy-conservative but is unfor-
tunately overall only first order accurate and numerically unstable in expansion. The alternative
predictor-corrector or midpoint method is approximately twice as expensive as central-difference
in the ALEGRA Lagrangian step. It is however fully second-order accurate in time and stable.
Stability analysis of the midpoint time integrator is discussed in [17]. The midpoint method is
slated to become the default time integrator for ALEGRA simulations.

The midpoint time integrator results are compared against the central-difference time integrator
using both the default settings of ALEGRA and the limhyp option. For β = 90◦, the lineout on
the jet surface is the only location where a difference between the midpoint and central-difference
time integrators is seen. Figure 6.1 shows plots of temperature lineouts for this case. From this
figure, midpoint appears to have no effect relative to the default settings of ALEGRA. The default
settings for midpoint and central-difference overlap one another almost completely. The limhyp
option with the midpoint time integrator slightly lowers the temperature on the jet surface. The
simulations where β = 45◦ show greater deviation from the analytic solution than β = 90◦ when
comparing the time integrators.

Figures 6.2 - 6.4 are temperature lineouts which show the effects of midpoint and central-
difference time integration where β = 45◦. Similar to β = 90◦, midpoint time integration does
not appear to introduce any variation from the central difference time integrator except for minor
changes in temperature along the jet. Figure 6.2 shows the temperature along the axis. The mid-
point time integrator appears to have minimal effect on both the default and limhyp options. Figure
6.3 shows the results for temperature along the middle of the jet. In this plot none of the settings
overlap completely and they are progressively worse in the following order: default settings with
midpoint-off, limhyp with midpoint-off, default settings with midpoint-on, limhyp with midpoint-
on. Thus from this plot the midpoint time integrator has slightly worsened the results. Figure 6.4
shows that the midpoint option has had similar results on the surface of the jet as in the middle of
the jet. The temperatures are slightly higher with midpoint than central difference. Slight varia-
tions are seen between the midpoint and central difference time integrators but the variations are
insignificant overall.
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Figure 6.1. β = 90◦: Jet surface lineout for temperature with 17
elements across the jet to show the effects of midpoint.
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Figure 6.2. β = 45◦: On axis lineout for temperature to show the
effects of midpoint. Compare with Figure 10.6.

Figure 6.3. β = 45◦: Mid-jet lineout for temperature to show the
effects of midpoint. Compare with Figure 10.7.
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Figure 6.4. β = 45◦: Jet surface lineout for temperature to show
the effects of midpoint. Compare with Figure 10.8.
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Chapter 7

DeBar Advection

DeBar Energy Advection is an optional algorithm implemented in ALEGRA which conserves
total energy [30, 29]. The DeBar method remaps the kinetic energy, then adds the difference
between the remapped kinetic energy and the kinetic energy computed after the momentum remap
to the internal energy. The advection option does have the possibility of creating anomalously cold
regions or hot regions due to truncation errors but has shown excellent results with some shock
simulations. The DeBar method as implemented also includes an option intended to reduce the
negative effects of applying the full algorithm everywhere.

The challenge for the DeBar type of algorithm is to provide for high quality shock simulations
while still retaining thermodynamic robustness. The DeBar method will only be implemented
when the code finds a shock with a Q/p value greater than the value specified in the input deck,
where Q represents the artificial viscosity and p represents the pressure. If no value is specified, a
default value of 0.0 is used and the DeBar method does not respect the size of the shock. The plots
in this chapter are run with the default DeBar energy advection.

Large errors are seen with the DeBar option where Q/p = 0.0 including cooling anomalies
along the inflow and heating errors along the jet for both β = 90◦ and 45◦. Errors became so large
for the limhyp option with central-difference time integration that the simulation failed. Figures
7.1 - 7.3 shows the lineouts for temperature along the jet where β = 90◦. While the lineout along
the jet surface (Figure 7.3) continues to show the worst errors, the on-axis and mid-jet lineouts
show heating that propagates from the stagnation point (Figures 7.1 and 7.2 respectively).

Common to previous chapters, the errors seen for β = 45◦ are worse. Figures 7.4 - 7.7 show
the lineouts for density on the jet surface and temperature lineouts in the jet. Figure 7.4 shows
that the drop in density is worse than shown in previous chapters. The temperature lineouts also
continue to show similar issues as seen in previous chapters with greater errors. The temperature
plots show that none of the various options seem to make much difference with DeBar on. All
lines in the plots follow the same general path. The negative effects from DeBar at the stagnation
point are now large enough to cause errors in the slug. Figure 7.5 shows a decrease in temperature
on the axis near the stagnation point.

Various values of Q/p are used and show that as Q/p increases, the effect from the DeBar
method decreases. The values include 1× 10−4, 1× 10−2, 1× 10−1, and 5× 10−1. The extreme
negative effects shown in the plots of this chapter occur with values 1×10−4 and 1×10−2. Larger
values slightly improve the results but only continue to improve until the DeBar method is com-
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pletely off and the results are the similar to the default ALEGRA code from Chapter 4. Therefore
the DeBar method only has negative effects for this test problem.

The large negative effect that this algorithm causes on this relatively benign quasi-isentropic
flow is perhaps indicative of a fundamental implementation error of some sort. A thorough review
of this algorithm is therefore called for.
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Figure 7.1. β = 90◦: On axis lineout for temperature with 17 ele-
ments across the jet showing results from DeBar energy advection.

Figure 7.2. β = 90◦: Mid-Jet lineout for temperature with 17 ele-
ments across the jet showing results from DeBar energy advection.
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Figure 7.3. β = 90◦: Jet surface lineout for temperature with 17
elements across the jet showing results from DeBar energy advec-
tion.
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Figure 7.4. β = 45◦: Jet surface lineout for density with 5 ele-
ments across the jet showing results from DeBar energy advection.

Figure 7.5. β = 45◦: On axis lineout for temperature with 5 ele-
ments across the jet showing results from DeBar energy advection.
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Figure 7.6. β = 45◦: Mid-Jet lineout for temperature with 5 ele-
ments across the jet showing results from DeBar energy advection.

Figure 7.7. β = 45◦: Jet Surface lineout for temperature with 5
elements across the jet showing results from DeBar energy advec-
tion.
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Chapter 8

Extended Finite Element Method (XFEM)

The extended finite element method (XFEM) in ALEGRA was developed in order to achieve
better sub-cell resolution for multi-material elements. It is conceivable that the issues that occur in
multi-material elements in general and specifically on a material void interface as in the jet prob-
lem may be totally sidestepped using this algorithm. The standard finite element method (FEM)
basically binds two materials together and modeling deficiencies occur when two materials experi-
ence contact, slide past one another, or must release from each other. The modeling issue is caused
by the singular, continuous velocity field of the FEM [36]. One can speculated that the anoma-
lous heating issues visible in ALEGRA are caused by the interface between a material and void.
In the shaped charge test problem this interface lies between the void background and copper jet
where the significant anomalous heating of the jet surface material occurs. The XFEM algorithm
could reduce the heating by its detailed treatment of the surface interaction. Originally XFEM was
used to model crack propagation and has since been implemented in ALEGRA as a new algorithm
underdevelopment for treating grain boundaries and dealing with multi-material elements [27].
ALEGRA uses pattern interface reconstruction with a volume-of-fluid based method together with
the XFEM to improve these interactions [8, 9]. This test problem utilizes the XFEM in ALEGRA
to assist in testing this emerging capability.

As with other capabilities tested, where β = 90◦, the XFEM algorithm appears to have a mini-
mal effect. Figure 8.1 shows that the XFEM simulation results are similar to the default settings of
ALEGRA as seen in Figure 4.7. There is an increase in temperature near the stagnation point and
along the jet surface for each resolution. Another change from the default settings are the smooth-
ness of the plots seen in the XFEM results. Particularly at high resolution, waves have developed
in the lineouts which may possibly be due to numerical instabilities.

This subtle instability is a new problematic issue seen in the XFEM simulations. The issue is
represented by the development of a coarseness or waves associated with the plots. The default
settings of ALEGRA are quite stable and smooth while the XFEM plots exhibit instabilities that
seem to worsen with increasing resolution. This is clearly visible in Figures 8.2 and 8.3 which
show the simulation at 11µs for the default and XFEM settings respectively. It is also visible in the
resolution plots of this chapter as compared to the smooth plots from Chapter 4. The vertical lines
seen in Figures 8.1 and 8.6 represent small break-ups of the copper jet along its surface caused by
these instabilities. After further analysis, these instabilities appear to be related to the relatively
new 2nd order remap option associated with the XFEM. Reducing the remap to first order removes
the waves and instabilities yet the 2nd order remap is essential for reducing the anomalous heating
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Figure 8.1. β = 90◦: Temperature lineout on the jet surface for
the XFEM in ALEGRA. Compare to Figure 4.7.

along the jet surface.

Figures 8.4 - 8.6 show the results of temperature lineouts for β = 45◦. The temperature lineout
on the axis in Figure 8.4 is compared with Figure 4.11. The XFEM simulation is not as accurate
on the axis. In Figure 4.11 the lower resolution plots show some heating near the stagnation point
and higher resolution plots follow the analytic solution very well. The XFEM results in Figure 8.4
appear wavy and there is more heating near the stagnation point. Even the higher resolution plots
do not return to the correct temperature value along the jet.

The lineout for temperature through the middle of the jet as seen in Figure 8.5 may be compared
with Figure 4.12. All errors for the temperature lineout on the axis are amplified in this plot. The
results appear rough or coarse from instabilities or waves propagating through the solution. The
heating near the stagnation point has also worsened for each mesh resolution. Even a very refined
mesh such as 17 elements across the jet does not match the temperature of the analytic solution
along the jet.

The XFEM has a significant effect on the shaped charge test problem at the jet surface. Figure
8.6 shows the temperature lineout on the jet surface for the XFEM and is compared with Figure
4.13. When comparing the highest resolution mesh, the default settings of ALEGRA match the
analytic solution better than the XFEM in ALEGRA. It is the low resolution plots which show
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significant improvement over the default settings in ALEGRA. With only 3 and 5 elements across
the jet the XFEM in ALEGRA greatly reduces the heating as compared to the default settings of
ALEGRA.
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Figure 8.2. β = 90◦: Temperature plot at 11µs for the default
settings of ALEGRA.

Figure 8.3. β = 90◦: Temperature plot at 11µs for the XFEM in
ALEGRA.
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Figure 8.4. β = 45◦: Temperature lineout on the axis for the
XFEM in ALEGRA. Compare to Figure 4.11.

Figure 8.5. β = 45◦: Temperature lineout in the middle of the jet
for the XFEM in ALEGRA. Compare to Figure 4.12.
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Figure 8.6. β = 45◦: Temperature lineout on the jet surface for
the XFEM in ALEGRA. Compare to Figure 4.13.
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Chapter 9

CVFA and IMMA Mixed Material/Void

The XFEM simulations from Chapter 8 appear to be the best for reducing the heat along the
surface of the jet. This suggests that an algorithm required by XFEM may be related to this effect
of reducing the anomalous heating. The constant volume fraction algorithm (CVFA) and void
compression algorithm turned off are possible causes for the heat reduction seen in XFEM. The
CVFA was replaced by the isentropic multi-material algorithm (IMMA) as the default in ALEGRA
[26]. The CVFA may be used with or without void compression while the user is forced to use
the void compression algorithm with the IMMA. These algorithms alter the way void interacts
with material in ALEGRA. This chapter provides further testing for issues that may exist on the
material/void interface. It focuses on the testing and results of the CVFA and IMMA with and
without the void compression algorithm.

Void Compression OFF

When β = 90◦, the CVFA results show subtle improvements from the standard ALEGRA de-
fault settings.The temperature lineouts on the axis and in the middle of the jet match the analytic
solution as do those associated with the default settings of ALEGRA. Figure 9.1 shows the tem-
perature lineout along the jet surface for the CVFA and is compared with Figure 4.7. The lower
mesh resolutions show slight improvements while higher resolutions are practically identical.

When β = 45◦, the CVFA shows more significant results. In Chapter 4 it was shown that the
temperatures increased enough along the surface of the jet as to reduce the density. Figure 9.2
shows CVFA results for density on the jet surface that may be compared with Figure 4.10 from
Chapter 4. The CVFA results show no drop in density suggesting that the temperature along the
jet surface is closer to the analytic solution. Figures 9.3 - 9.5 show the temperature lineouts for
the CVFA. For comparison, the results for the default setting are in Figures 4.11 - 4.13. On the
jet surface in Figure 9.5, all resolutions have reduced the heating, particularly those of 3 and 5
elements across the jet. In the middle of the jet and on the axis the higher resolution plots, 9 and
17 elements across the jet, are nearly identical between the CVFA and default settings. The lower
resolutions on the axis and in the middle of the jet tend to show small variations in heating from
the default settings.

The IMMA with void compression off also produces similar results. As seen in Figures 9.6
and 9.7 the heating along the jet has been reduced for both β = 90◦ and β = 45◦ respectively.
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Figure 9.1. β = 90◦: Temperature lineout on the jet surface for
the CVFA. Compare with Figure 4.7 and 9.8.
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Figure 9.2. β = 45◦: Density lineout on the jet surface for the
CVFA. Compare with Figure 4.10.

Figure 9.3. β = 45◦: Temperature lineout on the axis for the
CVFA. Compare with Figure 4.11.
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Figure 9.4. β = 45◦: Temperature lineout in the middle of the jet
for the CVFA. Compare with Figure 4.12.

Figure 9.5. β = 45◦: Temperature lineout on the jet surface for
the CVFA. Compare with Figure 4.13 and 9.9.
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Figure 9.6. β = 90◦: Temperature lineout on the jet surface for
the IMMA without void compression. Compare with Figure 4.7.

Figure 9.7. β = 45◦: Temperature lineout on the jet surface for
the IMMA without void compression. Compare with Figure 4.13.
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Figure 9.8. β = 90◦: Temperature lineout on the jet surface for
the CVFA with void compression. Compare with Figure 9.1.

Void Compression ON

The CVFA with void compression shows an increase in temperature along the surface of the jet.
Figures 9.8 and 9.9 shows results for β = 90◦ and β = 45◦ for comparison against those previously
shown in this chapter. The heating has increased along the jet surface with the void compression
algorithm. Therefore, void compression could be a major factor in the heating anomalies seen in
ALEGRA simulations.

The default ALEGRA code utilizes the IMMA with void compression on. Therefore the results
of the standard ALEGRA shown in Chapter 4 are compared against Figures 9.6 and 9.7. This
comparison shows that the IMMA without void compression has improved the results. Similar
results are seen in this chapter for the CVFA, the use of void compression increases the heating
along the surface of the jet.

The behavior of the plots with void compression off are similar to those shown in Chapter 8
which contains the ALEGRA XFEM results. These plots show that a major factor in the heating
of the jet is related to the void compression. Improvements shown from the CVFA and IMMA are
the smooth solutions, reduced heating along the jet, and they do not exhibit the subtle oscillations
and interface instabilities seen in the XFEM simulations.
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Figure 9.9. β = 45◦: Temperature lineout on the jet surface for
the CVFA with void compression. Compare with Figure 9.5.
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Chapter 10

Lab Frame Simulations

The shaped charge test problem is also simulated using a laboratory frame of reference which
provides a slightly more complex situation. ALEGRA is forced to deal with the high compres-
sion of the stagnation point and associated large velocity gradients near the tight corner in an
transformed frame of reference. This chapter details the results of utilizing a laboratory frame of
reference and the observed differences from the stagnation point frame of reference.

The laboratory frame of reference for the shaped charge test problem is the more traditional
way of viewing a shaped charge. In these simulations the copper liner collapses, forming a jet,
as shown in Figure 10.1. The collapse velocity, Vn, is assumed to be perpendicular to the copper
liner. The velocity of the stagnation point, Vsp is based upon the inflow velocity, Vt , according to
the relationships shown in Figure 10.1.

Vt

Vsp

Vn

β

Vsp =
Vt

cosβ
=

Vn

sinβ

Figure 10.1. Relationship of velocities in the laboratory frame of
reference.

Figure 10.2 illustrates the laboratory frame of reference in ALEGRA. The stagnation point
moves as the liner collapses as opposed to the stationary stagnation point seen in the stagnation
point frame of reference (see Figure 3.1). The shaped charge test problem uses β = 45◦ to simulate
the collapse of the liner. Mesh resolution is the same as explained in Chapter 3 and the focus is on
the under-resolved cases of 5 elements across the jet.

Analysis of the laboratory frame case is similar to that of previous chapters. Lineouts are used

79



Figure 10.2. Laboratory Frame of Reference in ALEGRA for
β = 45◦.

to verify the ability of ALEGRA to correctly model the subsonic isentropic flow. The lineouts at
the initial timestep are shifted according to the distance traveled by the stagnation point in order to
overlay the lineouts of the final timestep.

Resolution as seen in Chapter 4 greatly improves the accuracy of ALEGRA. Figures 10.3 -
10.5 show temperature lineouts comparing mesh resolution for the laboratory frame of reference.
Compared to Figures 4.11 - 4.13, the results of the laboratory frame of reference tend to vary. For
the temperature along the axis, the results are similar for both frames of reference. See Figures
10.3 and 4.11. For comparison of the temperature along the middle of the jet for both frames
of reference, see Figures 10.4 and 4.12. The laboratory frame of reference performs worse at
all resolutions with the exception of the highest resolution, 17 elements across the jet. At the
highest mesh resolution, both frames of reference match the analytic solution. For comparison
of the temperature along the jet surface for both frames of reference, see Figures 10.5 and 4.13.
The laboratory frame of reference gives mixed results. At 3 and 5 elements across the jet, the
temperature is closer to the analytic solution. At 9 elements across the jet the simulations are very
similar. At 17 elements across the jet, the stagnation point frame of reference is closest to the
analytic solution. Thus overall, the relative quality of the laboratory frame of reference depends
upon the lineout location and mesh resolution.

Standard options such as the artificial viscosity and time integrators, explored in Chapters 5
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and 6, are used to test the laboratory frame of reference. Figures 10.6 - 10.8 show results for
temperature lineouts. The time integrator does not have any significant effect on the results. The
artificial viscosity algorithm shows very different behavior than that seen in the stagnation point
frame of reference (Figures 5.5 - 5.7). In the stagnation point frame of reference the solution
appears to have achieved a quasi-steady state for temperature along the jet surface while in the
laboratory frame of reference the solution appears to fluctuate.

DeBar energy advection was tested with the laboratory frame of reference and results were
worse than those seen in Chapter 7. Many simulations failed after only a few time steps due to
catastrophic failure with extreme high and low temperatures.

The laboratory frame of reference proved to be more difficult for the XFEM in ALEGRA.
Figures 10.9 - 10.11 of the laboratory frame are compared with Figures 8.4 - 8.6 of the stagnation
point frame of reference. The oscillations shown in Chapter 8 have amplified causing a failure for
the highest resolution, 17 elements across the jet. The lineouts on the axis, in the middle of the jet,
and on the jet surface show temperature increases for all mesh resolutions when compared with the
stagnation point frame of reference. Many of these increases are less than those seen in the default
ALEGRA algorithms.

In general, the laboratory frame of reference did change the results slightly though many of the
differences were minor. The most significant improvement was seen in the temperature lineout on
the jet surface in Figure 10.5. The lowest mesh resolution, 3 elements across the jet, shows reduced
heating from the stagnation point frame of reference along the jet surface. With the wide variety
of options tested and retested in the laboratory frame of reference, none seem to have much impact
on the shaped charge test problem with the exception of the void compression algorithm.
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Figure 10.3. β = 45◦: Temperature lineout on the axis for com-
parison of mesh resolution with the laboratory frame of reference.
Compare with Figure 4.11.

Figure 10.4. β = 45◦: Temperature lineout in the middle of the
jet for comparison of mesh resolution with the laboratory frame of
reference. Compare with Figure 4.12.
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Figure 10.5. β = 45◦: Temperature lineout on the jet surface
for comparison of mesh resolution with the laboratory frame of
reference. Compare with Figure 4.13.
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Figure 10.6. β = 45◦: Temperature lineout on the axis for the
laboratory frame of reference. Compare with Figure 6.2.

Figure 10.7. β = 45◦: Temperature lineout in the middle of the
jet for laboratory frame of reference. Compare with Figure 6.3.
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Figure 10.8. β = 45◦: Temperature lineout on the jet surface for
the laboratory frame of reference. Compare with Figure 6.4.
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Figure 10.9. β = 45◦: Temperature lineout on the axis for the lab-
oratory frame of reference with the XFEM. Compare with Figure
8.4.

Figure 10.10. β = 45◦: Temperature lineout in the middle of
the jet for laboratory frame of reference with the XFEM. Compare
with Figure 8.5.
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Figure 10.11. β = 45◦: Temperature lineout on the jet surface for
the laboratory frame of reference with the XFEM. Compare with
Figure 8.6.
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Chapter 11

Conclusions

We have found that the solution import capabilities in ALEGRA allow for setting up and in-
tegrating forward in time the complex steady state exact subsonic flow problem that we have de-
scribed. We believe the problem is a significant test for a shock capturing, Lagrangian/Eulerian
code such as ALEGRA. We found that most of the default ALEGRA algorithms performed quite
well; however, there are still improvements to be made in the default algorithms, other proposed
improvements, and optional algorithms. This shaped charge jet test problem creates heating
anomalies on the jet surface which we believe may be associated with similar thermodynamic
issues which appear in other very complex ALEGRA simulations. It provides a concrete test prob-
lem in a difficult yet controlled simulation environment. Continued analysis of the simulation
results will allow for evidencial improvement of current default and proposed algorithms.

The entropy in this shaped charge prototype problem should remain constant through the entire
simulation because the initial conditions constitute a steady state isentropic flow. Temperature
should increase and then decrease as the material passes through the stagnation point region and
then asymptote to the free stream value value in the outgoing jet or slug. In the stagnation point
frame of reference where β = 90◦ the simulation creates minimal heating along the edge of the
jet. This simulation is consistently the closest to the analytic solution. Where β = 45◦, the heating
along the jet surface can be very severe. Evidence shows that this is primarily related to the mixed
cell algorithms active in cells with partial void. Studies indicated that the mixed cell constant
volume fraction algorithm and the isentropic multi-material algorithm in conjunction with the void
compression algorithm constituted the most important algorithmic variants which could provide
insight.

The time integration algorithm did not have a major effect on the accuracy of the simulation.
In many plots there was no visible difference between the central difference and midpoint time
integrators. In the cases where a change was visible it was generally small and insignificant.

DeBar energy advection was also specifically tested. In each case, DeBar has the adverse effect
of increasing the heating along the jet. For this test problem DeBar also caused heating into the
slug and some negative temperatures along the inflow. This algorithm needs much more detailed
analysis and improvements.

New artificial viscosity algorithms were tested to see if they improved anomalous heating along
the edge of the jet or in the interior. Specific parameters using the limiter and hyperviscosity were
selected for the simulation. The new parameters, as seen in Table 5.1, slightly reduced the heating
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along the jet surface yet results for the limiter and hyperviscosity varied for other lineouts in the
jet.

Generally, the XFEM algorithms appeared to robustly run this test problem. However, some
sort of anomalous wave structure is created. Heating characteristics along the jet surface are excel-
lent and appear to be similar to results with void compression off.

At lower resolutions a significant factor is the void compression algorithm. In the current de-
fault settings of ALEGRA, a user is forced to use void compression with the IMMA. Switching to
the CVFA without void compression or minor changes to the IMMA to remove void compression
greatly reduced the heating along the jet surface. At higher resolutions these algorithms do not
have significant effect.

The default settings in ALEGRA with a resolved mesh appear to be the most accurate and
consistent results obtained up to this point. The major issues in the simulations occur along the
edge of the jet and can be significantly reduced by increasing the mesh resolution. It has been
determined that the thermodynamic anomalies in the simulations are related to mixed cells. Cells
that include material and void appear to be causing the anomalies and it appears that this work
recommends a detailed look at current algorithms that interact with mixed material/void elements.

The resuls and recommendations given herein are specifically for the version of the ALEGRA
repository head code as of August 2013 and as such are subject to change in the current dynamic
research and development environment. The test problem setups presented here are integrated
into the ALEGRA test suite and maintained daily. ALEGRA tools are utilized to compute the
norm of the simulation and exact solution lineouts in the jet. These tools can thus indicate any
improvement or decline in the performance of the code for this problem. As such, these problems
represent an example of test driven development in which ALEGRA developers are able to test new
and improved algorithms against a well characterized solution in a permanent testing environment.
Thus a continually improving state of code quality will be maintained as algorithms are improved
and benchmarked against this exact solution.
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Appendix A

Exact Solution Evaluation Code

In the spirit of test reproducibility, we intend to make the code, CJETB, used to evaluate the
exact jet solution described in the text, freely available to interested researchers [33]. Please contact
Allen Robinson (acrobin@sandia.gov) for information related to obtaining a copy of the source
code and a sample input file.

The code writes out data in the EXODUS I finite element database format and as x-y pair data
for plotting [19]. It is expected that any user interested in running the CJETB code will have access
to reasonable post-processing procedures for this type of data and may modify the code with little
effort to be compatible with any particular finite element database format.

Setting up this solution as a useful verification problem for a transient flow shock capturing
code may require some ingenuity since the solution presented here is steady state. It is very im-
portant that the initial conditions in the transient code should be given as closely as possible by the
exact solution to avoid transients that will destroy the ability to compare the solution later in time.
Since the flow has a stagnation point, it will take some time for any initial transient response to be
advected out of the problem. These issues need to be examined and monitored carefully.

The steady state defined by this exact solution can be used as a test of an arbitrary mesh to
mesh transfer capability. Indeed, for the testing process discussed in the report to be effective such
a mesh to mesh transfer capability must be in place.
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